Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton

نویسندگان

  • Y. Feng
  • S. M. Handy
  • G. R. DiTullio
  • P. A. Lee
  • S. Tozzi
  • J. Sun
  • Y. Zhang
  • R. B. Dunbar
  • M. Lohan
چکیده

We conducted a factorial shipboard continuous culture experiment to examine the interactive effects of altered iron, irradiance and CO2 on the summer phytoplankton community of the Ross Sea, Antarctica. After 18 days of continuous incubation, iron enrichment increased phytoplankton biomass, nutrient drawdown, diatom and Phaeocystis abundance, and some photosynthetic parameters. High irradiance significantly increased the number of Phaeocystis antarctica colonies, as well as P. antarctica abundance relative to diatoms. Iron and light had significant interactive effects on diatom and P. antarctica pigment concentrations, P. antarctica colony abundance, and Si:N, Si:C, and N:P ratios. The major influence of high CO2 was on diatom community structure, by favoring the large centric diatom Chaetoceros lineola over the small pennate species Cylindrotheca closterium. The ratio of centric to pennate diatoms was significantly responsive to changes in all three variables individually, and to all of their possible twoand three-way combinations. These results suggest that shifts in light, iron, and CO2 and their mutual interactions all play a role in controlling present day Ross Sea plankton community structure, and need to be considered when predicting the possible future responses of biology and biogeochemistry in this

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of CO2, nutrients and light on coastal plankton. I. Abiotic conditions and biological responses

We report on results of a microcosm experiment to study the interactive effects of elevated CO2, high organic and inorganic nutrient loading, and high irradiance on phytoplankton and bacterioplankton from the Mediterranean coastal ecosystem of the Alboran Sea. This experiment was part of the Group for Aquatic Productivity 9th international workshop and was conducted by Working Group 1 (WG1: Phy...

متن کامل

Photosynthesis–irradiance responses in the Ross Sea, Antarctica: a meta-analysis

A meta-analysis of photosynthesis–irradiance measurements was completed using data from the Ross Sea, Antarctica, using a total of 417 independent measurements. P m , the maximum, chlorophyll-specific, irradiancesaturated rate of photosynthesis, averaged 1.1± 0.06 μg C (μg Chl) h. Light-limited, chlorophyll-specific photosynthetic rates (α) averaged 0.030± 0.023 μg C (μg Chl) h (μmol quanta m s...

متن کامل

Inorganic carbon uptake by Southern Ocean phytoplankton

We report the results of laboratory and field studies examining inorganic carbon (Ci) utilization by Southern Ocean phytoplankton. Both in monospecific laboratory cultures of diatoms and Phaeocystis antarctica and in natural assemblages in the Ross Sea, Ci uptake by phytoplankton was dominated by direct HCO { 3 transport. The contribution of HCO 3 transport to total Ci uptake ranged from 65% to...

متن کامل

Inorganic Carbon Utilization by Ross Sea Phytoplankton across Natural and Experimental Co2 Gradients1

We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3 ) was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3 ) ⁄CO2 interconversion as...

متن کامل

Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010